
On Computer Algebra
Generation of Symplectic

Integrator Methods

or

Of Headaches, Nightmares, and Algebra

Marc A. Murison (USNO)
and

John E. Chambers (Armagh Obs.)

30th Meeting of the AAS Division on Dynamical Astronomy
Estes Park, Colorado

April 30, 1999

Note: the full set of slides for this talk is
located on the web at

http://aa.usno.navy.mil/murison/talks/

ON COMPUTER ALGEBRA GENERATION OF SYMPLECTIC INTEGRATOR METHODS

MARC A. M URISON (USNO) AND JOHN E. CHAMBERS (ARMAGH OBS.)
murison@aa.usno.navy.mil and jec@star.arm.ac.uk

ABSTRACT

Most symplectic integrators used in solar-system dynamics are second-order in the time step . Typically, the Ha-t
miltonian is divided into a Keplerian piece and a smaller perturbative component . We can take advantage ofHA HB

the disparity in relative magnitude of these components to define a second small parameter, call it , ande = xHB x
xHA x ^ 1

use this to obtain a “partially” higher-order method.
Adopting a Lie series approach, one can, for a given order- method, examine the , , etc. error terms.N tN+1 tN+2

Each of the subterms of the coefficient of the error term has an associated factor of raised to a power rang-2k − 2 tk e
ing from linear to . By including adjustable parameters in each evolution operator or k − 1 exp(t{$,HA})

 in the trial method (composed of a combination of these operators) that approximates the true Hamilto-exp(t{$,HB})
nian evolution operator , one can in principle eliminate specified subterms in specified errorexp(t{$,HA + HB})
terms. For example, a second-order method chosen to eliminate the subterms linear in can, depending on thet3 e
magnitude of , produce a quasi-third-order method. In practice this process boils down to generating then solvinge
systems of nonlinear polynomial equations particular to the trial method.

A computer algebra program has been developed that automates the generation and solution of the equations that
result from requesting a specified method of order . This task is tedious due to the noncommutative algebra in-N
volved in the series expansions and subsequent algebraic manipulations, but computers are well-suited for handling
such tedium. Once a method, or set of equivalent methods, has been found, the program then generates and solves a
second set of equations for parameter solutions whereby subterms of specified powers in are eliminated for succes-e
sive , , etc. terms in the overall error expression. tN+1 tN+2

The project has, in these initial stages, been at least partially successful. Experiences and results to date will be
presented.

Symplectic Integrator Micro-Tutorial

Hamilton's equations

Poisson bracket

Equations of motion

Formal Solution

Recast as a mapping or evolution operator:

The mapping "updates" the system to the next time
step — the basis for a symplectic integration
algorithm

dq
dt = ØH

Øp
,

dp
dt = − ØH

Øq

F,H h ØF
Øq $ ØH

Øp − ØF
Øp $ ØH

Øq

dn
dt

= n, H n h (q, p)

n(t) = et $,H n(t − t)

= 1 + t $, H + t2

2 $,H 2 + ¢ n(t − t)

t h t − t0 $,H 2 = $, H ,H

S(t) h e t $, H

n(t) = S(t)n(t − t)

d $
dt = $, H

Symplectic Integrator Micro-Tutorial (cont.)

Split the Hamiltonian into two parts

e.g., a Keplerian part and a perturbative part

Then we can write

Multiplication is noncommutative:

Makes algebra more difficult

Practical algorithm: take separate "A" and "B" steps

Differs from the real Hamiltonian operator starting in
the second-order term

Hence, two exponential operators gives us a
first-order symplectic method

A h $,HA B h $, HB

S(t) = et(A+B)

= 1 + t(A + B)
+ 1

2 t2(A2 + AB + BA + B2) + ¢

[A, B] h AB − BA ! 0

S A(t)SB(t) = etAetB

= 1 + t (A + B)
+ 1

2 t2 (A2 + 2AB + B2) + ¢

S A(t) h etA S B(t) h etB

also define operators

H = HA + HB

Symplectic Integrator Micro-Tutorial (cont.)

Here's the trick: assemble a sequence of exponential
operators SA(αkτ), SB(αkτ) and judiciously choose
coefficients αk to match the true evolution operator to
a given order in the time step.

Example: three exponentials yield second-order
methods

The approximate Hamiltonian operator

Difference from the true Hamiltonian operator

S̃(t) h S A(at)SB(bt)SA(ct)
= eatAebtBe ctA

= (1 + aAt + 1
2 a2A2 t2 + ¢)

$(1 + bBt + 1
2 b2B2t2 + ¢)

$(1 + cAt + 1
2 c2 A2t2 + ¢)

= 1 + [bB + (a + c)A]t
+ [1

2 (a + c)2 A2 + abAB
+ bcBA + 1

2 b2 B2]t2

+ ¢

S̃(t) − S(t) = [(a − 1 + c)A + (b − 1)B]t
+ [1

2
(a + 1 + c)(a − 1 + c)A2

+ (ab − 1
2)AB + (bc− 1

2)BA
+ 1

2
(b − 1)(b + 1)B2]t2

+ ¢

Yields an overdetermined system of equations

Solution:

The resulting method is second-order in the time step:

where

This is the traditional symmetric second-order solution

b − 1 = 0
a − 1 + c = 0

(b − 1)(b + 1) = 0
2bc − 1 = 0
2ab − 1 = 0

(a + 1 + c)(a − 1 + c) = 0

a = c = 1
2 , b = 1

Symplectic Integrator Micro-Tutorial (cont.)

S̃(t) = e t(A+B)

+t3(1
12

[B, B,A] − 1
24

[A,A,B])
+O(t4)

[A,A,B] h [A, [A, B]] = A2B − 2ABA + BA2

[B,B,A] h [B, [B, A]] = B2A − 2BAB + AB2

Symplectic Integrator Micro-Tutorial (cont.)

Using this approach, we can in principle construct
approximate symplectic evolution mappings that
match the "real" mapping to any given order in the
time step

Unfortunately, in practice this rapidly becomes very
difficult

Number of equations to solve =

Complexity of individual equations grows rapidly with
time step order n

polynomial order of equations goes as n

2n − 2

1. We can adjust the parameters to optimize the error
terms more to our liking

Make use of a second small parameter:

Add extra exponential operators

more parameters to play with

Selectively eliminate certain subterms in the time step
error terms

For example, the traditional second-order evolution
operator becomes

S̃(t) = e t(A+B)

+t3(1
12 e2[B,B,A] − 1

24 e [A,A, B])
+O(et4)

Two Useful Insights

H = HA + eHB e ^ 1

Remove this term and we
have a quasi-fourth-order
method

Two Useful Insights (continued)

2. Tedious and voluminous algebra: this is what
computers are for!

General-purpose computer algebra systems (CAS)

Maple, Macsyma, Mathematica, Axiom, etc.

Symbolic programming languages enable

flexibility

algebraic sophistication

automation

Plan of Attack: a Two-Stage Process

1. Create a symplectic method, but include one or
more additional exponential operators

Hard!

For example, a second-order method composed of
more than three substeps

2. Solve for values of the extra parameter(s) that will
eliminate the desired error subterms

Even harder!

Requires solving a second, usually nastier, set of
polynomial equations

For example, in a second-order method, eliminate the
subterms of the τ3 error expression that are linear in
the Hamiltonian operator B

If B is the small one, then the remaining dominant error
terms go as

This leaves us with an essentially fourth-order method(!)

Costs us extra exponential terms

There are cases where the extra cost is still
significantly smaller than that of going to the full
higher-order method

e2t3

Symbolic Program SYMPLECTIC

Implemented the Plan of Attack in the Maple
symbolic algebra programming language

About 2500 lines of symbolic manipulation code

Main parts:

symplectic method solver

specify

number of exponential operators

parameter list

time step order of method, n

number of time step error terms to calculate beyond n, so
that we can play with them in the...

targeted subexpression eliminator

input

symplectic method (solution generated by first part)

method error expression (can be HUGE)

number of time step error terms beyond n in which to
eliminate subterms that are linear in A (or B)

output

optimized solutions

the full corresponding solution errors

Symbolic Program SYMPLECTIC (continued)

Subsystems:

polynomial equation set solver(!)

use the Maple general solver as kernel of algorithm
attuned to our specific equation set form

in practice, employ both methods and eliminate duplicate
solutions

noncommutative algebra procedures

series expansions

truncated series multiplication

transformations

factoring

plotting procedures

utility procedures

algebraic manipulators and expression simplifiers

Example of a [7,3] solution

size of error term

notice the two
free parameters

An example of linear-A terms to eliminate

An example of linear-A terms to eliminate

An example of linear-A terms to eliminate

Example of a [7,3] optimized solution

asymmetric solution

linear-A subterms
are eliminated
from the τ4 term

Work Progress Report

SYMPLECTIC is up and running, producing useful
results

Accessible [N,n] parameter space being explored

N = number of exponential terms SA,B(αkτ)

n = time step order of method, O(τn)

symbolic algebra progress thus far:

Red shaded region is probably beyond current hardware
and CAS capabilities

Each [N,n] case can yield many different solutions

Optimized methods being compared with numerical
solar system tests

First AJ paper (of two) has been submitted

ÍÍÍÍÍÍÍÍ5
(ü)üÍÍÍÍÍ4

(ü)üÍÍÍÍ3
üüüüüÍ2

--------1
98765432n\N

Preliminary Numerical Results

Ran two 10,000-year cases:

1. terrestrial planets only (ε ~ 10-5)

2. all 9 planets (ε ~ 10-3)

three diagnostic parameters:

step size h

max energy error

elapsed CPU time

Compared two selected methods (of many), from
among the optimized [5,2] and [7,2] solutions, with
the traditional 2nd and 4th order methods [3,2] and
[7,4]

Preliminary Numerical Results (continued)

Results:

For traditional [3,2] and [7,4] methods, max energy
error goes as τ2 and τ4, as expected

For optimized [5,2] and [7,2] methods, max energy
error goes as τ4 and τ6

The optimized methods cost significantly less in CPU
time than the traditional methods

even [7,2] is less costly than [3,2] at higher accuracies!

1 10

step size (days)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

|∆
E

m
a

x|

Relative Energy Error
terrestrial planets — 10,000-year integration

[3,2] slope = 2.02±0.02

[7,4] slope = 3.9±0.2

[5,2] slope = 4.5±0.2

[7,2] slope = 6.4±0.3

traditional

optimized

10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5

|∆Emax|

10

100

C
PU

 (
se

c)

CPU time
terrestrial planets — 10,000-year integration

[7,4] slope = -0.23±0.01

[3,2] slope = -0.454±0.009

traditional

[7,2] slope = -0.135±0.007

[5,2] slope = -0.183±0.009

optimized

1 10

step size (days)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

|∆
E

m
a

x|

Relative Energy Error
all planets — 10,000-year integration

[3,2] slope = 1.96±0.02

[7,4] slope = 4.3±0.1

[5,2] slope = 4.3±0.2

[7,2] slope = 4.8±0.3

traditional

optimized

10-12 10-11 10-10 10-9 10-8 10-7

|∆Emax|

10

100

C
PU

 (
se

c)

CPU time
all planets — 10,000-year integration

[7,4] slope = -0.22±0.01

[3,2] slope = -0.48±0.01

traditional

[7,2] slope = -0.20±0.01

[5,2] slope = -0.22±0.01

optimized

Preliminary Conclusions

This is fun!

The approach outlined in this talk yields optimized
low-order (in time step) symplectic methods that can
perform as well as higher-order methods, but at
significantly less cost.

To Do

Teach SYMPLECTIC new tricks

better intermediate expression simplification

expressions occupy tens of megabytes

requires ~100 MB and more of "running room" (i.e., RAM)

handle complicated nested sqrts (easy)

represent error expressions in a commutator notation
(hard!)

Take advantage of BCH formula

eliminate selected ε2 subterms

Complete the exploration of the
 [exp terms, step order]
space out to current software (Maple) and hardware
(memory, speed) limits

Complete the numerical comparisons of each of the
optimized methods

2nd AJ paper

